Chromatin remodeling factors and BRM/BRG1 expression as prognostic indicators in non-small cell lung cancer.
نویسندگان
چکیده
We immunohistochemically examined 12 core proteins involved in the chromatin remodeling machinery using a tissue microarray composed of 150 lung adenocarcinoma (AD) and 150 squamous cell carcinoma (SCC) cases. Most of the proteins showed nuclear staining, whereas some also showed cytoplasmic or membranous staining. When the expression patterns of all tested antigens were considered, proteins with nuclear staining clustered into two major groups. Nuclear signals of BRM, Ini-1, retinoblastoma, mSin3A, HDAC1, and HAT1 clustered together, whereas nuclear signals of BRG1, BAF155, HDAC2, BAF170, and RbAP48 formed a second cluster. Additionally, two thirds of the cases on the lung tissue array had follow-up information, and survival analysis was performed for each of the tested proteins. Positive nuclear BRM (N-BRM) staining correlated with a favorable prognosis in SCC and AD patients with a 5 year-survival of 53.5% compared with 32.3% for those whose tumors were negative for N-BRM (P = 0.015). Furthermore, patients whose tumors stained positive for both N-BRM and nuclear BRG1 had a 5 year-survival of 72% compared with 33.6% (P = 0.013) for those whose tumors were positive for either or negative for both markers. In contrast, membranous BRM (M-BRM) staining correlated with a poorer prognosis in AD patients with a 5 year-survival of 16.7% compared with those without M-BRM staining (38.1%; P = 0.016). These results support the notion that BRM and BRG1 participate in two distinct chromosome remodeling complexes that are functionally complementary and that the nuclear presence of BRM, its coexpression with nuclear BRG1, and the altered cellular localization of BRM (M-BRM) are useful markers for non-small cell lung cancer prognosis.
منابع مشابه
A synthetic lethality-based strategy to treat cancers harboring a genetic deficiency in the chromatin remodeling factor BRG1--letter.
The occurrence of inactivating mutations in SWI/SNF chromatin-remodeling genes in common cancers has attracted a great deal of interest. However, mechanistic strategies to target tumor cells carrying such mutations are yet to be developed. This study proposes a synthetic-lethality therapy for treating cancers deficient in the SWI/SNF catalytic (ATPase) subunit, BRG1/SMARCA4. The strategy relies...
متن کاملThe clinical significance of SWI/SNF complex in pancreatic cancer
Chromatin remodeling factors have been the subject of great interest in oncology. However, little is known about their role in pancreatic cancer. The objective of this study was to clarify the clinical significance of the SWItch/sucrose non-fermentable (SWI/SNF) complex in patients with pancreatic cancer. A total of 68 patients with pancreatic cancer who underwent R0, 1 resection were enrolled....
متن کاملSWI/SNF chromatin-remodeling factors induce changes in DNA methylation to promote transcriptional activation.
Brahma (Brm) and brahma-related gene-1 (Brg1) are mammalian homologues of SWI/SNF chromatin-remodeling factor subunits that can regulate both transcriptional activation and repression. Both Brg1 and Brm are mutated or deleted in numerous cancer cell lines, leading to the altered expression of genes that influence cell proliferation and metastasis. Here, we find that the promoters of two such ge...
متن کاملLoss of BRG1/BRM in human lung cancer cell lines and primary lung cancers: correlation with poor prognosis.
A role for the SWI/SNF complex in tumorigenesis based on its requirement for retinoblastoma induced growth arrest and p53-mediated transcription and the appearance of tumors in SWI/SNF-deficient mice. In addition, Western blot data have shown that the SWI/SNF ATPase subunits cell, BRG1 and BRM (BRG1/BRM), are lost in approximately 30% of human non-small lung cancer cell lines. To determine whet...
متن کاملChromatin remodeling complexes interact dynamically with a glucocorticoid receptor-regulated promoter.
Brahma (BRM) and Brahma-related gene 1 (BRG1) are the ATP-dependent catalytic subunits of the SWI/SNF family of chromatin-remodeling complexes. These complexes are involved in essential processes such as cell cycle, growth, differentiation, and cancer. Using imaging approaches in a cell line that harbors tandem repeats of stably integrated copies of the steroid responsive MMTV-LTR (mouse mammar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Clinical cancer research : an official journal of the American Association for Cancer Research
دوره 10 13 شماره
صفحات -
تاریخ انتشار 2004